1. For **lab #9**, you are given an **8K x 8 EEPROM** to hold your test program. Your design has the usual 4 bit program counter and **all unused address lines are tied high**. Show the memory contents you must program in the EEPROM to compute the following algorithm: **Multiply the contents of register A by 9 and store it in register B.**

Your code **should not exceed 9 nibbles** in memory and **your last instruction should be an infinite loop** so that no new instructions are executed beyond this point. (6 pt.)

<table>
<thead>
<tr>
<th>EEPROM Address</th>
<th>Required EEPROM Data (program all unused bits as zeros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______________ Hex</td>
<td>____________________________ Hex</td>
</tr>
</tbody>
</table>

2. In the above problem, what initial values of Reg. A will result in an over flow condition after the computation? (2 pt.) ____________________________

Grade Review Information: (NOTE: deadline of request for grade review is the day the exam is returned.)

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Point System:

<table>
<thead>
<tr>
<th>Page 1 & 2</th>
<th>20 points</th>
<th>Page 3</th>
<th>15 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 4</td>
<td>15 points</td>
<td>TOTAL</td>
<td>__________ out of 50</td>
</tr>
</tbody>
</table>

*Open book and open notes, *90-minute* examination to be done in pencil.*

No electronic devices permitted. All work and solutions are to be written on the exam where appropriate.
3. For the circuit below, derive the logic equation for Z.H. Do not simplify! (6 pt.)

\[Z.H = \frac{(A \cdot C)}{(A + B)} (A \cdot B \cdot C) \]

4. Using only 2 input NAND gates, implement the following logic equation. Do not simplify! (6 pt.)

\[Y = \frac{(A \cdot C)}{(A + B)} (A \cdot B \cdot C) \quad ; \text{Assume Y.L, A.L, B.L and C.L} \]
5. A vector containing **75 signed (2's complement) 8 bit numbers** is stored in memory. Write a G-CPU program to convert the 75 values to **unsigned values by adding 128** to the original signed number. i.e. signed numbers -128, 0, 1, and 127 convert to 0, 128, 129, and 255, respectively. Assume you have **1K x 8 ROM starting at $4000** and **1K x 8 RAM at $8000**. Also assume the following below:

 a. Starting address of the signed vector is **$4100**. Starting address of the unsigned vector should be **$8000**.
 b. The vector length is 75 and should be used as a counter value.
 c. Use the X register as a pointer to the signed vector. Use the Y reg. as a pointer to store the unsigned vectors.
 d. ROM $4000-$4FFF is designated as use for program. Only 75 values in RAM are used and the rest is open.

 Write your answer on the leftmost column lines & if you need more room wrap around to the right column.

 ORG $4000
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
 __ __
6. The following G-CPU program was put in EEPROM starting at address $4000; answer the questions below.

```
LDAA #$50
LDX #$4000
LDY #$8000
TOP  
    LDAA 0,X
    STAA $40,Y
    INX
    INY
    LDAB #$FF
    ADD_BA
    BNE TOP
```

6A. What is the effective address for the first LDAA #$50 instruction? __________________________ Hex (2 pt.)

6B. What is the effective address for the STAA $40,Y the last time the loop is executed? ______ Hex (2 pt.)

6C. What is the value of the BNE instruction operand? __________________________ Hex (2 pt.)

6D. If the clock is 1 MHz, how many seconds does it take to execute the STAA $40,Y instruction? (1 pt.)

6E. Show the expected values for each of the column variables below for all the cycles required to execute the LDAA 0,X and STAA $40,Y instructions the first time they are executed. All answers in Hex. (8 pt.)

Note: At reset all regs were initialized to zero. The above program will however alter many of them.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Addr Bus</th>
<th>Data Bus</th>
<th>IR</th>
<th>PC</th>
<th>R/W</th>
<th>X Reg</th>
<th>Y Reg</th>
<th>Reg Driving Addr Bus</th>
<th>Device Driving Data Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>