"World Acclaimed" Wisconsin Bowling Ball Waxoner Machine

Controller:

Inputs: Start.H (S) Gloss.H (G)

Outputs: Wax.H (W) Spin Ball.H (SB) HEA.L (H) Buff.L (B)

Assumptions:
- When the person puts in their quarters, start goes true.
- Start stays true for the entire process until the state machine returns to state 000.

Possible Start Signal

- SW is normally closed.
- Put in your quarters and SW opens, sets START = H.
- Gloss resets the START signal.

ASM Diagram
Procedure:

1. Determine ASM flow chart (given in this problem)

2. Count states $\Rightarrow 5$
 * Compute # of F/Fs needed $\Rightarrow 3$

3. Label states on ASM flow chart
 * Try to label such that only one bit will change for each state transition... this will simplify the state variable equations

4. Functional Block Diagram & select F/F Type

5. Next State Table
 * See next page
Find State Variable Equations

- since $S = T$ we count
- when $S = F$ we go to ϕ and stay

- we can remove S from K-Maps and place in equations via inspection

\[D_2 = \text{ (from } K\text{-Map) } S \]
\[D_1 = \text{ (from } K\text{-Map) } S \]
\[D_0 = \text{ (from } K\text{-Map) } S \]

Also, if our F/Fs had a clear input signal (low true) we could connect S to this and remove from the equations.
\[D_2 = (GQ_2Q_1Q_0)s \]

\[D_1 = (Q_2 + Q_1Q_0 + Q_0\overline{G} + Q_1\overline{G})s \]

```
check
\[ Q_2 = 0 \] should go to 000
\[ Q_1 = 1 \] else go to 110
\[ Q_0 = 0 \] when \( G = 1 \)
\[ G = 0 \]
```

\[D_0 = (\overline{Q_1})s \]
Find Equations for Output Variables

- \(H \) is only true in state 010 when \(G = \text{False} \) (Conditional Output)

 then by inspection \(H = \overline{Q}_2 \overline{Q}_1 Q_0 \overline{G} \)

\(W, S_B, B \) are all unconditional outputs

and \(\therefore \) only dependent on \(Q_2, Q_1, Q_0 \)

\(W = Q_2 + Q_0 \)

Check in ASM flow chart

\(S_B = Q_2 + Q_0 \)

\(B = \overline{Q}_2 \overline{Q}_1 \overline{Q}_0 \)

\(\therefore \) also you can get this by inspection
(8A) Physical Implementation w/Gates

State Eq. \(D_2 = \overline{Q}_2 Q_1 \overline{Q}_0 \overline{G} S \), \(D_1 = SQ_2 + SQ_1 Q_0 + SQ_0 \overline{G} + SQ_1 \overline{G} \)
\(D_0 = \overline{Q}_1 S \)

These ARE Logic Equations!

Outputs
\(H = \overline{Q}_2 Q_1 \overline{Q}_0 \overline{G} \), \(W = Q_2 + Q_0 \), \(SB = Q_2 + Q_0 \), \(B = \overline{Q}_2 Q_1 Q_0 \)

Circuitry

State Generator

Output Generation

\(\overline{Q}_2 \)
\(\overline{Q}_1 \)
\(\overline{Q}_0 \)
\(W \cdot H \)
\(H \cdot L \)
\(B \cdot L \)
Physical Implementation w/ EPROM

Flip Flops synchronize the events to a clock (they are still needed!)

```
D2 ---- D ---- Q ---- Q2
    clk

D1 ---- D ---- Q ---- Q1
     clk
     Next State

D0 ---- D ---- Q ---- Q0
     clk
     Present State
```

Note: we don't need \overline{Q} in F/F now

Memory Contents

| Address | Hex Value | Binary | SG | Q2 | Q0 | Data | Logic
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>000001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>FF</td>
<td>OF</td>
<td>011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data

| Address | Hex Value | Binary | SG | Q2 | Q0 | Data | Logic
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>000001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>FF</td>
<td>OF</td>
<td>011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Actual Voltage to be Programmed

| Address | Hex Value | Binary | SG | Q2 | Q0 | Data | Logic
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>000001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>FF</td>
<td>OF</td>
<td>011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: X will be programmed "L"