
Page 1) 12 points Angela
Page 2) 22 points Casey
Page 3) 21 points S/L Tomasz 7 Ben
Page 4) 17 points Matt
Page 5) 18 points Gabe
Page 6) 10 points Juan

Copy & Scan Cody/Kyle

TOTAL ___________________________ out of 100

Grade Review Information: 1. Deadline of request for grade review is the day the exam is returned. 2. Do not make any changes to problems in the test as this will be considered cheating. 3. Write only in this blocked area for a re-grade request. 4. Simply write the problem number that you would like re-graded. 3 Maximum.

1. ___________________________
2. ___________________________
3. ___________________________

See the ASM Flow Chart in Appendix A to answer question 1-5.

1. Assuming that we will implement the ASM Flow Chart in Appendix A with a 16K x 8 ROM and KG Flip-Flops (see Appendix A), draw a complete block diagram for the system below that contains the ROM, Flip-Flops and any other required hardware. Label all signals and assume that all unused address lines will be tied to 3.3V. Assume the following order of signals for most significant bit to least significant bit: W, V, Y, Q1, Q0, A, B, C, K1, G1, K0, G0 for connections to address and data lines. (8 pt.)

![Block Diagram]

2. How many memory locations will need to be programmed in this design and what is the address range of these locations? Also, identify the designated part number of this device.

Number of locations programmed in memory \[2^5 = 32\] (Decimal number, 1 pt.)

Range of memory to be programmed \[3FE0 - 3FFF\] (Hex, 3 pt.)
3. Show the complete Next State Table below for the design described in problem #1. Assume the following order of signals for most significant bit to least significant bit in the Next State Table: W, V, Y, Q1, Q0, A, B, C, K1, G1, K0, G0. Use X's in the inputs and outputs when necessary to simplify the table. (14 pt.)

<table>
<thead>
<tr>
<th>Present W V Y Q1 Q0</th>
<th>Next Q1 Q0</th>
<th>ABC</th>
<th>K1 G1 K0 G0</th>
</tr>
</thead>
<tbody>
<tr>
<td>iX 10 00</td>
<td>01</td>
<td>01 0</td>
<td>x1 x0</td>
</tr>
<tr>
<td>1X 00 00</td>
<td>10</td>
<td>01 1</td>
<td>x0 x1</td>
</tr>
<tr>
<td>01 X0 00</td>
<td>10</td>
<td>00 1</td>
<td>x0 x1</td>
</tr>
<tr>
<td>00 X0 00</td>
<td>00</td>
<td>11 0</td>
<td>x1 x1</td>
</tr>
<tr>
<td>o0 X1</td>
<td>x0</td>
<td>11 1</td>
<td>o1</td>
</tr>
<tr>
<td>01 X0</td>
<td>x0</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>10 X1</td>
<td>x0</td>
<td>00</td>
<td>00 1</td>
</tr>
<tr>
<td>11 0x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Show the ROM memory contents (Address and Data in Hex) that needs to be programmed for the locations corresponding to State 0. Program Don't Cares (X) in Data as Zeros/Low. Note: signal definitions are W.L, V.H, Y.H, A.L, B.L, C.H and the KG inputs are high true. (8 pt.)

<table>
<thead>
<tr>
<th>Addr</th>
<th>W.L V.H Y.H Q1 Q0</th>
<th>A.L B.L C.H</th>
<th>K1 G1 K0 G0</th>
</tr>
</thead>
<tbody>
<tr>
<td>04, 0C</td>
<td>lX H L L</td>
<td>H L L</td>
<td>LH LL</td>
</tr>
<tr>
<td>00, 08</td>
<td>lX L L L</td>
<td>H L H</td>
<td>LL LH</td>
</tr>
<tr>
<td>18, 1C</td>
<td>H H X L L</td>
<td>H H H</td>
<td>LL LH</td>
</tr>
<tr>
<td>10, 14</td>
<td>H L X L L</td>
<td>L L L</td>
<td>LH LH</td>
</tr>
</tbody>
</table>

Room to Convert Next State Table to Voltages Below

<table>
<thead>
<tr>
<th>Addr (Hex)</th>
<th>Data (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 44</td>
<td>0C 44</td>
</tr>
<tr>
<td>00 51</td>
<td>08 51</td>
</tr>
<tr>
<td>18 71</td>
<td>1C 71</td>
</tr>
<tr>
<td>10 05</td>
<td>14 05</td>
</tr>
<tr>
<td>04 04</td>
<td>04 04</td>
</tr>
</tbody>
</table>
5. For the ASM Flow Chart in Appendix A and the Next State Table in #3, assume that the design will now be implemented entirely in your CPLD. Show the simplified logic equations required for B and K1. \(B = \omega \overline{Q_1} + \overline{V}Q_1 + Q_0 \overline{Q_1} \) \(\text{MSOP} \) \(K1 = \frac{1}{\omega, L, V, H, Q_1, H, Q_0, H} \) (6 pt.)

\[B = \omega \overline{Q_1} Q_0 + \omega \overline{V} Q_1 \overline{Q_0} + \overline{Q_1} Q_0 \] \(= (\omega + \overline{V}) Q_1 \overline{Q_0} + \overline{Q_1} Q_0 \) \(= (\omega + \overline{V}) \overline{Q_0} + \overline{Q_1} Q_0 \) \(= (\omega Q_0 + \overline{V} Q_0 + Q_0) \overline{Q_1} \) \(= (\omega + \overline{V} + Q_0) \overline{Q_1} \) \(\text{MSOP} \)

7. Assuming again that we are referencing the ASM Flow Chart in Appendix A. **Fill in the Logic Timing Diagram** below. Assume all devices zero propagation delay equal and the flip-flops are falling edge triggered. Q1:0 = Present State at the outputs of the KG Flip-Flops. (12 pt.)
8. Design a 22K x 8 memory module containing 16K x 8 of EPROM and 6K x 8 of SRAM. Assume that the following devices are available: 8K x 8 EPROMs and 4K x 4 SRAMs. The memory module contains the usual address and data lines along with control signals CE.L, RW.H and OE.L. Note: The EPROM should go in the lowest 16K of the memory module. Show all device connections and logic decode equations. (12 pt.)

9A. What are the address ranges (Hex) for the memory devices you have used in your design above? (4 pt.)

9B. What device is enabled when data is read from 3000 Hex? (1 pt.)
10. For this problem consult the circuit in Appendix B that contains the Serial Adder/Parallel Out. Assume two numbers are being serially inputted as in a Quartus simulation. Fill in all the remaining signals and identify the two numbers are being added. Assume zero propagation delays and time zero is the far left of the timing diagram and **Y is the LSB** of the final parallel answer. (12 pt.)

![Timing Diagram]

Answer

11. What two 4 bit **binary numbers** are being added above? (1 pt.)

\[
\begin{array}{c}
N_1 \quad 1110 \\
N_2 \quad 1011 \\
\end{array}
\]

12. What is the final computed result for ABCY in **binary** after 4 clocks? (1 pt.)

\[
1001
\]

13. If the two binary numbers being added are **SIGNED 4 bits**, what is the result in decimal and is it correct? (2 pt.)

\[
\begin{array}{c}
\text{Result in decimal:} \\
1110 = -2 \\
1011 = -5 \\
\end{array}
\]

Is it correct/valid? Circle one. **Yes or No**

\[
\begin{array}{c}
-2 + (-5) = -7 \\
0111 \\
\hline
1000 \\
+ 1 \\
\hline
1001
\end{array}
\]
14. In the space provided below, show the ASM Flow Chart required for the Automatic Dish Washer design in Appendix C. (10 pt.)
Appendix A. ASM Diagram (W.L, Y.H, V.H, A.L, B.L, C.H)

KG Flip-Flop
Next State Table

<table>
<thead>
<tr>
<th>KG</th>
<th>Q+</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1 set</td>
</tr>
<tr>
<td>01</td>
<td>Q hold</td>
</tr>
<tr>
<td>10</td>
<td>/Q toggle</td>
</tr>
<tr>
<td>11</td>
<td>0 clear</td>
</tr>
</tbody>
</table>

Appendix B. Serial Adder with Parallel Output Conversion
Appendix C. System Description – Automatic Dish Washer

Inputs:

Dirt Sensor (DS1:0) => two bits, 00 = clean, 01 = slightly dirty, 10 = dirty, 11 = extremely dirty

Water Full Sensor (FS) => one bit, If FS = 1, Water is at max limit. Else, FS = 0, Water is below the max limit and more can be added.

Door Open (DO) => one bit, If DO = 1 then door is open. Else, DO = 0, the door is closed.

Outputs:

Lock Door (LD) => one bit, If LD = 1, the main door remains locked. Else, LD = 0, door is unlocked.

Water Value (WV) => one bit, If WV = 1, water is turned on. Else, WV = 0, water is off.

Pump Water (P) => If true, pump water through the internal spray jets to wash the dishes.

Heat Water (H) => If true, turns on the hot water heating element for additional cleaning power.

Drain Water (DR) => If true, the water drain is open. Else, if false, the drain is closed.

Design Rules:

The system clock period is 5 minutes. The control process is broken into four main phases: fill with water, wash dishes, drain water and sit idle for drying.

Fill Water Phase - Begin adding water for 5 minutes. During this time, the Dirty Sensor will calibrate and deliver a two bit indication of dish dirtiness level. i.e. 00, 01, 10, 11 as described above. The door should be unlocked for this phase, however, if the door is opened, immediately stop adding water.

When the door is closed, continue filing the water in the tank until full for as long as it takes the Water Full Sensor (FS) to become true. The door should be unlocked and again immediately shut off the water if the door is opened.

Wash Phase - Once the tank is full of water, begin the wash phase as follows. If the dishes are clean, run the wash cycle for 5 minutes. If the dishes are slightly dirty run the wash cycle for 10 minutes. If the dishes are dirty run the wash cycle for 15 minutes. If the dishes are extremely dirty run the wash cycle for 20 minutes. During the wash phase lock the door, heat the water and pump it through the jets to clean the dishes.

Drain Phase - After finishing the wash phase, drain the water for 5 minutes and continue to keep the door locked.

Idle Phase – Unlock the door and sit idle forever in the last state. Assume that when it is time to wash the dishes, a start button (similar to reset) will be used to reset to the first state in the ASM flow chart.