1. Directly synthesize a circuit for the following equation using only 2 Input NOR gates only. (9 pt.)

\[Y = A^* (B^*C) + E + D \]

; A.L, B.H, C.L, D.H, E.L, Y.H \underline{Do Not Simplify the Equation!}

\[\underline{Key} \]

\[\sim \neg = \text{NOR} \]

\[\neg \neg = \equiv \]

\[\text{B.H} \rightarrow \text{A.L} \]

\[\text{C.L}\rightarrow \text{D.H} \]

\[\underline{Each \ gate = 1 \ pt.} \]

\[\underline{Most \ optimal \ solution = Full \ credit} \]

\[\underline{Any \ # \ of \ gates \ over \ 9 \ AND \ \underline{Correct}} \]

\[\underline{\sim \ pt \ per \ \underline{-0.5 \ gate}} \]

\[\underline{No \ key \ -2 \ pt} \]

\[\underline{Incomplete \ key \ -0.5} \]

\[\underline{Incorrect \ circuit \ or \ using \ simplified} \]

\[\underline{\sim \sim \sim \sim \ \underline{9 \ pts \ depending}} \]

\[\underline{Pg. \ Score =} \]
2. Find the **minimum sum of products** and **minimum product of sums** for the logic equation below using a K-Map. (14 pt.)

\[Y = (A+B+C+D)/(A+/B+C+D)/(A+C+D)(B+/C+D)(A+/B+/D) \]

\[
\begin{align*}
Y (\text{MSOP}) &= \frac{\overline{A}B\overline{D} + \overline{B}D + A\overline{D} + \overline{A}C\overline{D}}{2} \\
Y (\text{MPOS}) &= \frac{(B+D)(A+B+\overline{D})(\overline{A}+C+D)}{2}
\end{align*}
\]

3. Derive the logic equations for the following signals listed after the circuit below. **Show all intermediate signals as HIGH true for partial credit purposes. DO NOT SIMPLIFY YOUR ANSWER!**

\[
\begin{align*}
\text{W.H} &= (A+B)(\overline{C}\overline{D}) \\
\text{Y.L} &= (A+B)(\overline{C}\overline{D}) + \overline{E}+\overline{G}
\end{align*}
\]
4. Simplify the equation below with De Morgan's Rule and Boolean Identities to find the MSOP. (10 pt.)

\[\bar{X}Y\bar{Z} + \bar{X}Y\bar{W} + \bar{X}Z\bar{W} + \bar{X}Z\bar{W} + \bar{X}Y\bar{Z} \]

\[Y = \bar{X}Z + \bar{Y}Z + XYW \]

5. A student would like to design a multiplier that computes the product of a 2 bit unsigned number times a 3 bit unsigned number. i.e. \(P = M1:0 \times N2:0 \) ; where all numbers are unsigned binary

How many bits are required for \(P \)? \(5 \) (2 pt.)

Write the Canonical Sum of Products (CSOP) for the most significant bit of \(P \) based on inputs \(M1:0 \) and \(N2:0 \) below. (8 pt.)

- \(3 \times 7 = 21 \)
- \(3 \times 6 = 18 \)
- \(3 \times 5 = 15 \)

\[P4 = M1M0N2N1N0 + M1M0 \bar{N}2N1\bar{N}0 \]

-4 if 1 term is correct

\[P4 = M1M0N2N1 -1 \text{ simplified} \]

Page 3
6 - 8. Perform the following addition, subtraction and multiplication. (9 pt.)

\[
\begin{array}{c}
10111 \\
111001 \\
101101 \\
+111111 \\
\hline
10100101
\end{array}
\]

3 [Wrong carry] 3

\[
\begin{array}{c}
0110112 \\
00010001 \\
-0111110 \\
\hline
0001001
\end{array}
\]

10101.01
\[
\begin{array}{c}
10101.01 \\
10101.00 \\
101.0101 \\
\hline
101111.1001
\end{array}
\]

9. For the circuit below, derive the logic equation for Z.H. Do not Simplify! (8 pt.)

\[
\text{Z.H} = \overline{E}G + \overline{E} \overline{G} + \overline{C} \overline{D} A \overline{B} \overline{E} \overline{G} + \overline{C} \overline{D} A \overline{B} \overline{E} \overline{G}
\]
10. Given the circuit below complete the voltage timing diagram for signals X and Y. Assume all devices have a 10nsec propagation delay. (8 pt.) Assume A=L, B=L, C=H initially.

Gate Propagation Delay is 10nsec!

11. For the circuit below derive the logic equation for Y and add the required missing Pull-up or Pull-down resistor to make Y a function of A,B,C,D, E, G and N. (10 pt.)

\[Y.L = \left(A + \bar{B} \right) \left(C \bar{D} \right) \left(\overline{E} \right) \left(G \right) \left(\overline{N} \right) \]
12. Create a device that decrements a \textbf{4 bit Signed Number} by 1. \textbf{N3:0} is the \textbf{signed input} and \textbf{M3:0} is the \textbf{signed output} equivalent to \textbf{N3:0} – 1. For example, if a “3” is input to the device, the output should be “2”. One additional output, \(V \), should also be generated that indicates when an overflow occurs. For example, if decrementing an input by 1 creates an overflow condition, output \(V = 1 \), otherwise \(V = 0 \).

Draw the truth table for the device below:

<table>
<thead>
<tr>
<th>N3</th>
<th>N2</th>
<th>N1</th>
<th>N0</th>
<th>M3</th>
<th>M2</th>
<th>M1</th>
<th>M0</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Derive the MSOP Logic Equation for \textbf{M0} and \textbf{V} (5 pt.):

\[
M_0 = \overline{N_0}
\]

\[
V = N_3 \overline{N_2} \overline{N_1} \overline{N_0}
\]