Open book and open notes, 90-minute examination. No electronic devices are permitted.

Page 1) 9 points ________________ Page 2) 23 points ________________

Page 3) 18 points ________________ Page 4) 17 points ________________

Page 5) 18 points ________________ Page 6) 15 points ________________

TOTAL ________________ of 100

Re-grade requests must be handed in the day exams are returned in class. Write the problem number you wish reviewed. A maximum of three review problems is allowed. Do not write anywhere else on the exam other than below or you will receive a zero on the exam.

1. Directly synthesize a circuit for the following equation using only 2 Input NOR gates only. (9 pt.)

 \[Y = \overline{A} \cdot \overline{(B \cdot C)} + E + D \; ; \; A.L, B.H, C.L, D.H, E.L, Y.H \] Do Not Simplify the Equation!
2. Find the **minimum sum of products** and **minimum product of sums** for the logic equation below using a K-Map. (14 pt.)

\[Y = \overline{(A+B+C+D)}(\overline{A}+B+C+D)(\overline{A}+C+D)(B+\overline{C}+D)(A+B+D) \]

\[Y (MSOP) = \text{__} \quad (8) \]

\[Y (MPOS) = \text{__} \quad (6) \]

3. Derive the logic equations for the following signals listed after the circuit below. *Show all intermediate signals as HIGH true for partial credit purposes. DO NOT SIMPLIFY YOUR ANSWER!*

\[W.H = \text{__} \quad (5 \text{ pt.}) \]

\[Y.L = \text{__} \quad (4 \text{ pt.}) \]
4. Simplify the equation below with De Morgan’s Rule and Boolean Identities to find the MSOP. (10 pt.)

5. A student would like to design a multiplier that computes the product of a 2 bit unsigned number times a 3 bit unsigned number. i.e. \(P = M1:0 \times N2:0 \); where all numbers are unsigned binary

How many bits are required for \(P \)? (2 pt.)

Write the Canonical Sum of Products (CSOP) for the most significant bit of \(P \) based on inputs \(M1:0 \) and \(N2:0 \) below. (8 pt.)
6 – 8. Perform the following addition, subtraction and multiplication. (9 pt.)

\[
\begin{align*}
&\quad 111001 \\
&101101 \quad - \quad 01111110 \\
&+ \quad 111111 \\
&\quad 1010101
\end{align*}
\]

9. For the circuit below, derive the logic equation for Z.H. **Do not Simplify!** (8 pt.)

Z.H = ____________________________
10. Given the circuit below complete the voltage timing diagram for signals X and Y. Assume all devices have a 10nsec propagation delay. (8 pt.) **Assume A=L, B=L, C=H initially.**

11. For the circuit below derive the *logic equation for Y* and *add the required missing Pull-up or Pull-down resistor* to make Y a function of A,B,C,D, E, G and N. (10 pt.)

Y.L = __
12. Create a device that decrements a 4 bit Signed Number by 1. N3:0 is the signed input and M3:0 is the signed output equivalent to N3:0 – 1. For example, if a “3” is input to the device, the output should be “2”. One additional output, V, should also be generated that indicates when an overflow occurs. For example, if decrementing an input by 1 creates an overflow condition, output V = 1, otherwise V = 0.

Draw the truth table for the device below:

<table>
<thead>
<tr>
<th>N3</th>
<th>N2</th>
<th>N1</th>
<th>N0</th>
<th>M3</th>
<th>M2</th>
<th>M1</th>
<th>M0</th>
<th>V</th>
</tr>
</thead>
</table>

Derive the MSOP Logic Equation for M0 and V (5 pt.):